In Vivo Pharmacology Platform

Customized in vivo pharmacology services to accelerate drug discovery process
WuXi AppTec's *in vivo* Pharmacology

WuXi AppTec is building a world leading *in vivo* pharmacology service platform. This platform provides global drug hunters different animal disease models for the pharmacology evaluation of lead compound and preclinical candidates. Our animal experiments are supervised by experienced oversea experts and executed in AAALAC certified animal facilities. Our key research areas are mainly focused on diseases of central nervous system (especially on chronic pain), metabolic diseases like obesity, diabetes and diabetic complications (hepatitis and cardiovascular diseases). Considering the specificity of oncology drug discovery, services of this area are executed by another team in WuXi. Our vision is to design and execute pharmacology assays to provide qualified data to our clients. Keep providing high standard services that exceed our customers’ expectation, we have received lots of awards and high satisfaction feedbacks from all over the world.

| In vivo PK/PD platform (PK/PD screening model or translational science model) | • IV infusion in living animals with behavioral test
• Behavioral test, Biomarker, RO in the same animal
• Microdialysis, cpd exposure in the same animal |
| --- | --- |
| • PD/stroke
• Psychiatry
• Chronic pain | CNS and pain efficacy model platform |
| Metabolic disease *in vivo* platform (Efficacy or PK/PD screening model) | • Diabetes (including Diabetic complications)
• Obesity
• Dyslipidemia (including NAFLD and NASH) |
General in vivo pharmacology team introduction

40 core staff. PhD: 5; MS 14 (10 over 3ys in WuXi)

Supporting team: animal care, operation, cell culture etc.

Gang Lu, M.D., Ph.D.
Dir., Pharmacology
14 years of experience in neuroscience research including 6 years of *in vivo* pharmacology in pharmaceutical CRO (WuXi Apptec)

Zhijing Hu, MS.c
Assistant Dir., Pharmacology
9 years of experience in neuroscience research including 6 years of *in vivo* pharmacology in pharmaceutical CRO (WuXi Apptec)

Zhou Zhou, Ph.D.
Principle scientist, Pharmacology
11 years of experience in diabetes and metabolism research. PhD in pharmacology from Shanghai Institute of Material Medica.

Juntao Kan, Ph.D.
Senior scientist in metabolic, hepatic and cardiovascular models.
6 years of experience in pharmacological research including 1 year of drug discovery in pharmaceutical CRO (WuXi Apptec).

Major clients and award

![AstraZeneca](image)
![Novartis](image)
![Lundbeck](image)
![Progress in Mind](image)

![Pfizer](image)
![Lilly](image)
![GlaxoSmithKline](image)
CNS and pain in vivo screening and efficacy models

AD/PD/stroke
- **Disease models**
 - 6-OHDA PD model
 - Ischemia model (MCAO)
- **Measurements**
 - Novel object recognition
 - Rota rod
 - AIM score

Psychiatry
- **Disease models**
 - Acute PCP/amphetamine
 - SubPCP/NeoPCP model
 - Learned helplessness
- **Measurements**
 - CAR
 - Locomotor activity
 - Prepulse inhibition
 - Attentional set shifting
 - Vogel
 - Forced swimming

Chronic pain
- **Disease models**
 - OA pain (MIA)
 - Fibromyalgia syndrome (ICS)
 - Neuropathic pain (Chung, CCI)
 - Inflammation pain (Formalin)
 - Postsurgical pain (Brennan)
- **Measurements**
 - Weight bearing
 - Von Frey hair
 - Cold allodynia (acetone)
 - Heat hyperalgesia

Metabolic disease models and tests

Diabetes
- oGTT (mouse/rat), ipGTT (mouse/rat), ivGTT (rat);
- Glucosuria experiment;
- Chronic efficacy studies in db/db, Zucker and other models
- Chronic insulin sensitizing experiment
- DIO/STZ mice
- Thrombus

Obesity
- Acute food intake;
- Chronic food intake;
- BW studies;
- Growing or established DIO mice;
- Biochemical biomarkers;
- Pathology;

Dislipidemia
- Acute lipid tolerance;
- Chronic studies to monitor; TG, cholesterol
- NAFLD (DIO mice);
- NASH (STZ+DIO mice)
Case study

In vivo pharmacology achievements

- Provided drug discovery expertise for program leadership
- *In vivo* target engagement assay identified and fully validated in 14 weeks
- PKPD strategy identified & assay validated in 2 weeks
- Rodent disease model identified & assay validated in 4 weeks
- Biomarker strategy identified and evaluated

Objective:

To identify a potent, selective, adequately stable, brain penetrable, enzyme inhibitor — lead compound.

Period: 12 months

Achievement: Lead generation milestone achieved

Collaboration with a Major Pharma Partner

Objective:

To identify a potent, selective, adequately stable, brain penetrable, receptor modulator.

Period: 15 months

Achievement: Lead generation milestone achieved

In vivo pharmacology achievements

- Provided drug discovery expertise for program leadership
- *In vivo* target engagement assay identified and fully validated in 2 weeks
- PKPD strategy identified
- Rodent disease model supporting disease indication

Objective:

To identify a potent, selective, adequately stable, limited brain penetrable, ion channel blocker.

Period: 24 months

Achievement: Lead generation milestone achieved
Introduction of CNS/Pain drug discovery services

• We are building a translational science based CNS/Pain in vivo pharmacology platform, which can provide qualified data to increase success rate of testing drug in Phase 2 clinic trials.

• Currently, we have already set up a series of animal models and assays, including receptor occupancy, PK/PD, behavior test, biomarkers and pathology.

Animal model and measurements

PK/PD
- Receptor Occupancy
- PK/PD analysis in moving animals

Motor function
- Spontaneous locomotor activity test (sLMA)
- Rotarod test

Schizophrenia
- Drug evoked locomotor activity test
- Conditioned avoidance response (CAR)
- Prepulse inhibition
- Attentional set-shifting test in sub-PCP rats

Anxiety and Depression
- Depression: Forced swimming test; Learned helplessness
- Anxiety: Vogel conflict test; Elevated plus maze test

Parkinson’s Disease
- Unilateral 6-OHDA lesion model
- L-DOPA induced dyskinesia in PD model

Pain model and measurements
- Acute pain: Tail flick test
- Inflammation pain: Complete Freund’s adjuvant (CFA) model; Formulain Model
- Neuropathic Pain: Spinal nerve ligation; Chronic constriction injury model
- Fibromyalgia-like Pain: Intermittent cold stress (ICS) model
- Osteoarthritis: Monosodium iodoacetate induced osteoarthritis (MIA) model

Animal model and measurements

PK/PD
- Receptor Occupancy
- PK/PD analysis in moving animals

Motor function
- Spontaneous locomotor activity test (sLMA)
- Rotarod test

Schizophrenia
- Drug evoked locomotor activity test
- Conditioned avoidance response (CAR)
- Prepulse inhibition
- Attentional set-shifting test in sub-PCP rats

Anxiety and Depression
- Depression: Forced swimming test; Learned helplessness
- Anxiety: Vogel conflict test; Elevated plus maze test

Parkinson’s Disease
- Unilateral 6-OHDA lesion model
- L-DOPA induced dyskinesia in PD model

Pain model and measurements
- Acute pain: Tail flick test
- Inflammation pain: Complete Freund’s adjuvant (CFA) model; Formulain Model
- Neuropathic Pain: Spinal nerve ligation; Chronic constriction injury model
- Fibromyalgia-like Pain: Intermittent cold stress (ICS) model
- Osteoarthritis: Monosodium iodoacetate induced osteoarthritis (MIA) model
PK/PD

Target engagement — Receptor occupancy (RO)
- Measurement of free ligand binding to its intended receptor *in vivo* at the site of action
- Supporting discovery program by providing confidence on compound MOA
- Providing bases for the dose-regimen of preclinical and clinical studies

Species: Mouse or rat

Endpoint: %Receptor occupancy *in vivo* with PK correlation
- Radio-labeled ligand detection by scintillation method
- Nonradioactive tracer detection by LC-MS/MS

Throughput: Fully DRC of compound within the same day

Groups in a standard assay: Naïve (Vehicle), Testing compounds with 6-8 doses; n=3-5/group

Turnaround time: ~3 days/each study; 2 assays/week

Dose-dependent dopamine D2 receptor occupancy by Haloperidol *in vivo*

![Graph showing dopamine D2 receptor occupancy](image)

<table>
<thead>
<tr>
<th>Assay method</th>
<th>ED50 (dose) mg/kg</th>
<th>ED50 (plasma) ng/ml (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC-MS/MS (PO)</td>
<td>0.4</td>
<td>1.3 (3nM)</td>
</tr>
<tr>
<td>Isotope method (s.c)</td>
<td>0.015</td>
<td>0.7 (1.5nM)</td>
</tr>
</tbody>
</table>

- D2 receptor occupancy of haloperidol as determined by the two methods
- Data were presented as % occupancy vs. plasma exposure in individual animals
- ED50 presented as mean of the group (n=3-5)

Body composition analysis moving animals with behavioral test

- Assess PK and PD end point in the same animal
- Sample below was formalin test in free moving animals with i.v. infusion

Species: Mouse or rat

Endpoint: Motion counts

Throughput: Testing 8 animals at the same time

Data Sample
Neuroscience

Motor Function — Spontaneous locomotor activity test (sLMA)

- A high-throughput, robust and sensitive behavioral assay to assess spontaneous motor activity

Species: Mouse or rat
Endpoint: Distance traveled (video tracking)
Throughput: Testing 18 mice or 16 rats at the same time

Groups in a standard assay: Naïve (Vehicle), Testing compounds with 3 doses; n=10/group
Turnaround time: ~2 days/each study; 3 assays/week

Data Sample

Effect of Cpd A (p.o.) on sLMA test

Data were presented as Mean±SEM, n=10/group. *** p < 0.001 vs. Veh group One way ANOVA followed by Dunnett’s post hoc

Effect of Cpd B (p.o.) on sLMA test

Data were presented as Mean±SEM, n=10/group. one way ANOVA followed by Dunnett’s post hoc

Motor Function —Rotarod test

- A high-throughput, robust and sensitive behavioral assay for testing motor coordination and exercise capacity.

Species: Mouse
Endpoint: Fall-off latency (90s Cutoff)
Throughput: Testing 8 animals at the same time

Groups in a standard assay: Naïve (Vehicle), Positive control, Testing compounds with 3 doses; n=12/group
Turnaround time: ~3 days/each study; 2 assays/week

Data Sample

Effect of Diazepam (p.o.) on rotarod test

Data were presented as Mean±SEM, n=10/group. * p < 0.05, *** p < 0.001 vs. Vehicle group, One way ANOVA by Dunnett’s post hoc
Acute Pain — Tail flick test (TF)

- A high-throughput, robust and sensitive nociceptive assay to measure sensitivity to heat

Species: Rat or Mouse
Endpoint: Tail flick latency (TFL)
Throughput: 90 animals per day

Groups in a standard assay: Naïve (Vehicle), Positive control, Testing compounds with 3 doses; n=10~12/group
Turnaround time: ~3 days/each study; 2 assays/week

Inflammation Pain — Complete Freund’s adjuvant (CFA) model

- A widely used model to assess CFA induced inflammation pain in paw

Species: Rat
Endpoint: Thermal hyperalgesia, Cold hyperalgesia, paw thickness (digital caliper), mechanical hyperalgesia (Randle Salido device), mechanical allodynia
Throughput: Compound test in one day

Groups in a standard assay: Naïve (Vehicle), Positive control, Testing compounds with 3 doses; n=8/group

Data were presented as Mean±SEM, n=7 per group, *p<0.05, ***p<0.001 vs saline, One way ANOVA, Dunnett’s test.

Data were presented as Mean±SEM, n=10/group. **p < 0.01, ***p < 0.001 vs Vehicle group, One way ANOVA by Dunnett’s post hoc test.
Acute Pain — Formalin Model

- Formalin is injected into the dorsal surface of the right hind paw to induce acute pain.
- A high-throughput, robust and sensitive acute pain behavioral assay

Species: Mouse or rat
Endpoint: Motion counts
Throughput: 8 sets of instrument to be able to test 8 animals at the same time

Groups in a standard assay: Naïve (Vehicle), Positive control, Testing compounds with 3 doses; n=10~12/group

Data Sample

Data were presented as Mean±SEM, n=8/group. ** p< 0.01, * p < 0.001 vs. vehicle group, One way ANOVA by Dunnett’s post hoc**

Neuropathic Pain — Chung Model (Spinal nerve ligation, SNL)

- A commonly used model to measure surgical induced neuropathic pain
- Gabapentin & Doluxetine showed robust anti-allodynia and anti-hyperalgesia effects in the model

Species: rat
Endpoint: mechanical allodynia, thermal hyperalgesia, cold allodynia
Throughput: Testing 60 animals at the same time point

Groups in a standard assay: Naïve/sham, Vehicle control, Positive control, Testing compounds with 3 doses; n=8~10/group
Turnaround time: ~2 weeks/each study

Data were presented as Mean±SEM, n=10-12/group. * p < 0.05, ** p < 0.01 vs. PBS group, One way ANOVA by Dunnett’s post hoc
Neuropathic pain — Chronic constriction injury model (CCI)

- A commonly used model to measure surgical induced neuropathic pain
- Pregabalin showed robust effects in the model

Species: rat
Endpoint: mechanical allodynia, thermal hyperalgesia, cold allodynia
Throughput: Testing 60 animals at the same time point

Groups in a standard assay: Naïve/sham, Vehicle control, Positive control, Testing compounds with 3 doses; n=8~10/group
Turnaround time: ~2 weeks/each study

![Data Sample](image)

Data were presented as Mean±SEM, n=9-10/group. ** p< 0.01, *** p < 0.001 vs. vehicle group, One way ANOVA by Dunnett’s post hoc

Fibromyalgia-like Pain — Intermittent cold stress (ICS) model

- A specific model to assess stress induced fibromyalgia pain
- Mechanical allodynia lasted>12 days, thermal hyperalgesia lasted>15 days

Species: Mouse
Endpoint: mechanical allodynia, thermal hyperalgesia
Throughput: Compound test in one day

Groups in a standard assay: Naïve, Vehicle, Positive control, Testing compounds, n=10/group

![Data Sample](image)

Data were presented as Mean±SEM, n=10/group. *** p < 0.001 vs. Vehicle group, One way ANOVA by Dunnett’s post hoc
Osteoarthritis — Monosodium iodoacetate induced osteoarthritis (MIA) model

- A model to measure MIA induced osteoarthritis (OA) to measure joint inflammation and pain

Species: rat
Endpoint: mechanical allostynia, grip force, weight bearing using Tekscan® system and pathological evaluation

Groups in a standard assay: Naïve (Vehicle), Positive control, Testing compounds with 3 doses; n=8/group

Data Sample

The Tekscan® system showed weight bearing asymmetry in MIA-injected rats.

① : left front paw
② : right front paw
③ : left hind paw
④ : right hind paw (MIA injected)

Histopathological analysis for HE staining of MIA rats

Data were presented as Mean±SEM, n=8/group. * p< 0.05, *** p < 0.001 vs. Vehicle group , One way ANOVA by Dunnett’s post hoc

Motor Function — Drug evoked locomotor activity test

- A high-throughput, robust and sensitive behavior al assay to assess evoked motor activity

Species: Mouse or rat
Endpoint: Distance traveled
Throughput: Testing 18 mice or 16 rats at the same time
Turnaround time: ~3 days/each study; 2 assays/week

Groups in a standard assay: Naïve (Vehicle), Positive control, Testing compounds with 3 doses; n=10/group

Data Sample

Data were presented as Mean±SEM, n=10/group. *** p < 0.001 vs. Saline+Amphetamine group, Two-Way Repeated Measures ANOVA followed by Dunnett’s post hoc
Schizophrenia — Conditioned avoidance response (CAR) test

A high-throughput, robust and sensitive behavioral assay to access antipsychotics

Species: Rat
Endpoint: Avoidance (%), Escape Failure (%)
Throughput: Testing 8 animals at the same time

Groups in a standard assay: Naïve (Vehicle), Positive control, Testing compounds with 3 doses; n=10/group
Turnaround time: ~3 days/each assay; 2 assays/week

Data Sample

Effect of Risperidone (s.c.) on avoidance in CAR test (Fish-344 Rat)

Data were presented as Mean ± SEM, n=8 per group, ***p<0.001 vs. Vehicle group, Two-way RM ANOVA followed by Dunnett’s post hoc

Schizophrenia — Prepulse inhibition (PPI)

- Measure inhibition of startle response to a strong stimulus following a weak preceding stimulus
- Assess sensory motor activity often impaired in schizophrenia patients
- Anti-psychotics (such as Haloperidol or clozapine) reduced amphetamine or PCP-induced PPI deficits

Species: Rat
Endpoint: Prepulse inhibition of startle
Throughput: Testing 8 animals at the same time

Groups in a standard assay: Naïve (Vehicle), Positive control, Testing compounds with 3 doses; n=12/group
Turnaround time: ~3 days/each study; 2 assays/week

Data Sample

Effect of Clozapine (s.c.) on PCP-induced deficits in Prepulse Inhibition (5, 10 & 15 dB above background, collapsed data)

Data were presented as Mean ± SEM, n=12 per group, ***p<0.001 vs. saline/PCP group, Two-way RM ANOVA followed by Dunnett’s post hoc

Effect of Haloperidol (s.c.) on amphetamine-induced deficits in Prepulse Inhibition (5, 10 & 15 dB above background, collapsed data)

Data were presented as Mean ± SEM, n=12 per group, *p<0.05, **p<0.01, ***p<0.001 vs. saline/Amphet group, Two-way RM ANOVA followed by Dunnett’s post hoc
In Vivo Pharmacology

Schizophrenia — Attentional set-shifting test in sub-PCP rats

- A unique preclinical model to measure executive function deficit induced by PCP

Species: Rat

Endpoint: Trials to criteria of finishing tasks

Throughput: Testing 6 animals in one day

Groups in a standard assay: Naive (Vehicle), Model, Positive control, Testing compounds with 3 doses; n=12/group

Turnaround time: 1.5 month/study

Data Sample

![Effect of Modafinil (64 mg/kg, p.o.) on sub-PCP induced attentional set-shifting deficits in Long Evans rats](image)

Data were presented as Mean ± SEM, n=12 per group, ***p<0.001 vs. Vehicle group, **p<0.01 vs. PCP group, Two-way RM ANOVA followed by Dunnett’s post hoc test.

Anxiety and Depression — Forced swimming test (FST)

- A high-throughput, robust and sensitive behavior assay to measure forced swimming evoked stress

Species: Mouse

Endpoint: Immobility (s)

Throughput: Testing 4 animals at the same time

Groups in a standard assay: Naive (Vehicle), Positive control, Testing compounds with 3 doses; n=10~12/group

Turnaround time: ~3 days/each assay; 2 assays/week

Data Sample

![Effect of Imipramine (p.o.) on immobility in forces swim test](image)

Data were presented as Mean ± SEM, n=12 per group, **p<0.01, ****p<0.0001 v.s. saline, one way ANOVA followed by Dunnett’s test.
Anxiety and Depression — Learned helplessness (LH)

- A high-throughput assay to measure depression-like behaviors
- Antidepressants (such as imipramine) to decrease the escape failure in the assay

Species: Rat

Endpoint: Escape failure

Throughput: Testing 8 animals at the same time (8 boxes)

Groups in a standard assay: Vehicle (sham), IS (helplessness), Positive control, Testing compounds with 3 doses; n=10~12/group

Turnaround time: ~7 days/each study

Data Sample

Effect of Imipramine (p.o.) on escape failure in learned helplessness test

Data were presented as Mean ± SEM, n=10-12 per group, ***p<0.001 vs NS-Saline; #p<0.05 vs IS-Saline, one way ANOVA followed by Dunnett’s test

Anxiety and Depression — Vogel conflict test

- A high-throughput, robust and sensitive assay to measure anxiety-like behavior
- Anxiolytics (such as diazepam) increases the licks in the assay to reduce animal’s anxiety

Species: Rat or mouse

Endpoint: Licks/shocks

Throughput: 16 animals at the same time (16 cages)

Groups in a standard assay: Vehicle (no-shock), IS (shock), Positive control, Testing compounds with 3 doses; n=10~12/group

Turnaround time: ~7 days/each study

Data Sample

Effect of Diazepam (DZP, i.p.) on shocks in Vogel test

Data were presented as Mean ± SEM, n=12 per group, ****p<0.0001 v.s. vehicle (no shock); **p<0.01 v.s. vehicle (shock), one way ANOVA followed by Dunnett’s test
Anxiety and Depression — Elevated plus maze test (EPM)

- A standard behavior assay of fear and anxiety by testing the proportion of time/entries spent in the open arms
- Anxiolytic (such as diazepam) increases the proportion of time/entries

Species: Rat or mouse

Endpoint: %OE (open arms entries), %TO (time in open arms), %DO (distance in open arms), Total travelled distance

Throughput: 50 animals per day

Groups in a standard assay: Naïve (Vehicle), Positive control, Testing compounds with 3 doses; n=10~12/group

Turnaround time: ~3 days/each study; 2 assays/week

Data Sample

Effect of Diazepam (DZP, i.p.) on behaviors of plus maze test

Data were presented as Mean ± SEM, n=12 per group, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 v.s. vehicle, one way ANOVA followed by Dunnett's test

Parkinson’s Disease (PD) — Unilateral 6-OHDA lesion model (EPM)

- The model is induced by unilateral 6-OHDA injection into specific brain areas via stereotaxic surgery
- It is a complete DA lesion model
- >80% successful rate

Species: Rat

Endpoint: Apomorphine-induced rotation, ICH of tyrosine hydroxylase (TH) neuron

Throughput: 30 rats/day for surgery

Turnaround time: 1 month for developing model

Data Sample

TH neuron loss in lesioned substantia nigra

Apomorphine induced contralateral rotations
Parkinson’s Disease (PD) — L-DOPA induced dyskinesia in PD model (PD-LID)

- This model is used for testing the compound effects on chronic L-DOPA induced dyskinesia in PD model

Species: Rat
Endpoint: abnormal involuntary movement (AIM) score
Throughput: Evaluate 40 PD-LID animals in one day

Groups in a standard assay: Naïve (Vehicle), Model group, Testing compounds with 3 doses; n=8/group
Turnaround time: 2 month/each study

Data Sample

Effect of Buspirone (2 mg/kg, i.p.) on AIMs in rat PD-LID model

Data were presented as Mean ± SEM, n=12 per group, ***p<0.001 v.s. vehicle, t test

Remark

Introduction of metabolic and hematology disease drug discovery services

- Animal model driven metabolic and hematology disease pharmacology platform provides IND enabling preclinical pharmacology data.
- Validated animal disease model including Obesity, Diabetes and Thrombosis.

Animal disease models and measurements

Obesity and Hyperlipemia
- High Fat Diet Induced Obesity (DIO) model
- Food intake
- High Fructose Diet (HFD) model
- Lipid Tolerance Test

Diabetes
- Glucose Tolerance Test
- Urine Glucose Assay
- db/db mouse model
- ZDF rat model

Thrombosis
- Platelet aggregation
- Tail bleeding test
- Arterio-venous shunt model
- Laboratory hematology testing
- Inflammation agents
Metabolic

Obesity — High Fat Diet Induced Obesity (DIO) model

- Mice fed with HFD (Research Diet D12492) for 12–14 weeks to assess anti-obesity agents
- 300 DIO mice /month ready to use

Species: Mouse

Endpoint: Body weight, Food intake, Total cholesterol (TC), Triglyceride (TG), ALT, AST, Tg in, liver/muscle Insulin, GLP-1, Leptin, HE/Oil red O stain, Fat pad, etc.

Throughput: 8 mice/group; 5–8 groups

Groups in a standard assay: Vehicle, Positive control, Testing compounds with 3 doses

Turnaround time: ~1.5 month/each study

Data Sample

Data were presented as Mean ± SEM, n=8 per group, *p<0.05, **p<0.01 vs. vehicle, one way ANOVA followed by Dunnett’s test

Obesity — Food intake

- Acute food intake measurement

Species: Mouse or rat

Endpoint: Body weight, food intake

Throughput: 8 animals/group; 5–8 groups

Groups in a standard assay: Vehicle, Positive control, Testing compounds with 3 doses

Turnaround time: 4 days/each study (baseline record included)

Data Sample

Data were presented as Mean ± SEM, n=8 per group, **p<0.01, ***p<0.001 vs. vehicle, one way ANOVA followed by Dunnett’s test

Obesity - Body composition analysis

- Fat mass, lean mass, body free water, body total water measurement

Species: Mouse

Device: Echo MRI

Throughput: 8 animals/group; 8~10 groups /day

Data Sample

Minor variation between tests with same samples

Significant difference of fat/lean mass in lean and DIO mice

Data were presented as Mean ± SD, n=10

Data were presented as Mean ± SEM; ****p<0.0001, t test
Dyslipidemia — High Fructose Diet (HFD) model

- A model induced by feeding with High Fructose Diet (HFD) to assess dyslipidemia

Species: Rat
Endpoint: Body weight, Food intake, Total cholesterol (TC), Triglyceride (TG), HDL-C, LDL-C, etc.
Throughput: 8 rats/group; 5~8 groups

Groups in a standard assay: Vehicle, Positive control, Testing compounds with 3 doses
Turnaround time: ~1month/each study

Data Sample

![Effect of EPA (p.o) on reducing Plasma TG Levels (mmol/L)](image)

Data were presented as Mean ± SEM, n=8 per group, *p<0.05, **p<0.01, ***p<0.001 vs. vehicle, one way ANOVA followed by Dunnett's test

Dyslipidemia — Lipid Tolerance Test

- A test to assess lipid tolerance. Corn oil challenge is used to increase the blood TG levels

Species: Mouse or rat
Endpoint: Blood Triglyceride (TG)
Throughput: 8 animals/group; 5~8 groups

Groups in a standard assay: Vehicle, Positive control, Testing compounds with 3 doses
Turnaround time: 1day/each study

Data Sample

![Effect of Cpd A (p.o) on reducing Plasma TG Concentration Time course (mg/dl)](image)

Data were presented as Mean ± SEM, n=8 per group, *P<0.05, **P<0.01, ***P<0.001 vs. vehicle, two-way ANOVA followed by Newman-keuls test
Hyperglycemia — Glucose Tolerance Test (Acute)

- An assay to assess glucose tolerance including oral glucose (OGTT), intraperitoneal glucose (IPGTT) or intravenous glucose (IVGTT) to fasted animals

Species: Mouse or rat
Endpoint: Blood glucose and Insulin
Throughput: 8 animals/group; 5~8 groups

Groups in a standard assay: Vehicle, Positive control, Testing compounds with 3 doses
Turnaround time: ~5 days/each study

Data Sample

Effect of Cpd A (s.c) on Blood Glucose lowering time course in IPGTT

Data were presented as Mean±SEM, n=5 per group, ***p<0.001 vs vehicle, one way ANOVA followed by Dunnett’s test

Diabetes — Urine Glucose Assay

- An assay to measure urine glucose

Species: Rat
Endpoint: Urine volume; Urine glucose; Blood glucose

Groups in a standard assay: Naive (Vehicle), Positive control, Testing compounds with 3 doses; n=4~6/group
Turnaround time: 2 days/each study

Data Sample

Effect of Canagliflozin (p.o.) on urine volume in 24 hrs post treatment

Data were presented as Mean±SEM, n=5 per group, ***p < 0.001 vs vehicle group, one way ANOVA followed by Dunnett multiple comparison test

Effect of Canagliflozin (p.o.) on the urine glucose exclusion in 24 hrs post treatment

Data were presented as Mean±SEM, n=5 per group, ***p < 0.001 vs vehicle group, one way ANOVA followed by Dunnett multiple comparison test
Diabetes — db/db mouse model

- A commonly used model to assess the anti-diabetic effect in db/db mice

Species: Mouse
Endpoint: Body weight, Food intake, water intake, blood glucose, insulin, GTT, HBA1C/fructosamine, pancreases histology stain.
Throughput: 10~12 animal/group; 5~8 groups

Groups in a standard assay: Vehicle, Positive control, Testing compounds with 3 doses
Turnaround time: ~1.5 month/each study

![Data Sample](image1)

Data were presented as Mean ± SEM, n=12 per group, *p<0.05,**P<0.01, ***p<0.001 vs. vehicle, one way ANOVA followed by Dunnett’s test.
9 weeks old db/db mice were treated with Cpd B for three weeks.

Diabetes — ZDF rat model

- A commonly used model to assess the anti-diabetic effect in ZDF rat

Species: Rat
Model: Zuker fa/fa male rats
Endpoint: Body weight, Food intake, water intake, blood glucose, insulin, GTT, HBA1C/fructosamine, pancreases histology stain.
Throughput: 8 animal/group; 5~8 groups

Groups in a standard assay: Vehicle, Positive control, Testing compounds with 3 doses
Turnaround time: ~1.5 month/each study

![Data Sample](image2)

Data were presented as Mean ± SEM, n=8 per group, *p<0.05 vs. vehicle, one way ANOVA followed by Dunnett’s test.
12 weeks old ZDF rats were treated with Rosiglitazone for three weeks; age of model animal is critical in efficacy evaluation.
Hematology

Thrombosis — Platelet aggregation

- A classical and sensitive assay for evaluating novel anti-platelet drug to measure platelet aggregation and biomarkers (TXB2, PGI2, PGE etc)
- Aggregation inducer: ADP, arachidonic acid (AA), and collagen
- In vitro, ex vivo and in vivo PK/PD study

Species: Rat or Rabbit
Endpoint: Platelet aggregation (%), platelet aggregation inhibition (%) and biomarkers

Throughput: For in-vitro study: 40 samples/day
PK/PD study: 12 rats/day.
Turnaround time: 1 week for one in vitro study; 2 week for one in vivo study

Data Sample

The correlation between rabbit platelet aggregation inhibition and TXB2 (the biomarker) production inhibition by ASA (Aspirin in vitro)

Data were expressed as Mean ± SEM (n=5), Sigmoidal dose-response (variable slope)

Thrombosis — Tail bleeding test

- A simple and quick in vivo assay for evaluating antithrombotic effects of compounds

Species: Rat
Endpoint: Bleeding time
Throughput: 36 rats/day

Groups in a standard assay: Vehicle, Positive control, Testing compounds with 3 doses
Turnaround time: 1 weeks for one study

Data Sample

Effect of Rivaroxaban on rat tail-transection bleeding time after oral administration

Data were presented as Mean ± SEM, n=7 per group, *p<0.05, **p<0.01 vs. vehicle, one way ANOVA followed by Dunnett's test
Thrombosis — Arterio-venous shunt model

- A classical efficacy model to test agents to prevent thrombus formation

Species: Rat
Endpoint: The weight of thrombus; Inhibition of thrombus formation (%)
Throughput: 24 rats/day

Groups in a standard assay: Vehicle, Positive control, Testing compounds with 3 doses
Turnaround time: 1 week for one study

Data Sample

![Graph showing effect of Rivaroxaban (p.o.) on thrombus formation in SD rats](image)

Data were presented as Mean ± SEM, n=7 per group, **P<0.01 vs. vehicle, one way ANOVA followed by Dunnett's test.

Laboratory hematology testing — ADVIA 2120i Hematology System

- The ADVIA 2120i hematology systems provide accurate, first-pass results for laboratory hematology test

Species: Rat, mouse, Rabbit
Turnaround time: 1 day

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>CBC results</th>
<th>Differential results (absolute and %)</th>
<th>Platelet results</th>
<th>Reticulocyte results (absolute and %)</th>
<th>CSF assay results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WBC, RBC, HB⁺, HCT, MCV, MCH, MCHC, CHCM, RDM, HDM, CH, CHDW, PLT</td>
<td>NEUT, LYMPH, MONO, EOS, BASO, LUC(Large Unstained Cells)</td>
<td>PLT, MPV, PDW, PCT</td>
<td>RETIC, MCVr, CHCMr, RDWr⁺⁺, HDWr⁺⁺, Chr, CHDWr⁺⁺</td>
<td>Optional</td>
</tr>
</tbody>
</table>
Inflammation

Inflammation — Inflammation agents (IL-1b, IL-6 and TNF-α)

- A high-throughput, robust and sensitive assay to detect inflammatory biomarkers
- Anti-inflammatory drugs significantly inhibit LPS induced cytokines production

Species: Mouse, Rat, and Human samples
Endpoint: Cytokines (IL-1b, IL-6, and TNF-α) level in plasma and tissue
Throughput: 40 samples in one plate

Groups in a standard assay: Saline + Vehicle, LPS + Vehicle, LPS + Testing compounds with 3 doses; n=8/group
Turnaround time: ~3 days/each study; 2 assays/week

Data Sample

Effect of compound A (s.c.) on mouse brain cytokines induced by LPS

Data were expressed as Mean ± SEM, ####p<0.0001 vs. Saline + veh group, *p<0.05, **p<0.01, ****p<0.0001 vs. LPS + veh group, One way ANOVA, Fisher’s LSD test

Effect of compound B (p.o.) on rat plasma cytokine induced by LPS

Data were expressed as Mean ± SEM, ####p<0.0001 vs. Saline + veh group, ****p<0.0001 vs. LPS + veh group, One way ANOVA, Fisher’s LSD test
Non-Alcoholic SteatoHepatitis

STZ & high fat diet induced NASH model

- Neonatal male mice exposed to low-dose streptozotocin (STZ).
- From week 4 to feed high fat diet (HFD; 60% kcal) for up to 16 weeks.

Species: Mouse

Endpoint

- Pathological analysis: liver oil-red, HE, sirius-red stain & NASH/fibrosis scoring.
- Biomarker analysis: liver inflammation, fibrosis and cancer related protein/gene expression

Data Sample

Liver HE stain

![Liver HE stain comparison](image)

Normal, Vehicle, Telmisartan

- Macrovesicular and microvesicular steatosis
- Ballooning degeneration, Inflammation foci

Liver oil-red stain

![Liver oil-red stain comparison](image)

Normal, Vehicle, Telmisartan

Sirius red stain

![Sirius red stain comparison](image)

Normal, Vehicle, Telmisartan

Total NAS score

![Total NAS score graph](image)

Steatosis score

![Steatosis score graph](image)

Fibrosis Score

![Fibrosis Score graph](image)

Data were expressed as Mean ± SEM, N=10; #p<0.0001, ##p<0.01 compare to normal group; *p<0.05 compared to vehicle group; One-way ANOVA